洪 民憙 (Hong Minhee) :nonbinary:'s avatar

洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · 997 following · 1406 followers

An intersectionalist, feminist, and socialist living in Seoul (UTC+09:00). @tokolovesme's spouse. Who's behind @fedify, @hollo, and @botkit. Write some free software in , , , & . They/them.

서울에 사는 交叉女性主義者이자 社會主義者. 金剛兔(@tokolovesme)의 配偶者. @fedify, @hollo, @botkit 메인테이너. , , , 等으로 自由 소프트웨어 만듦.

()

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to Bart Louwers's post

@bart Thanks for sharing this! I hadn't seen this issue before—really interesting to learn that Node.js is exploring built-in structured logging.

Looking at the discussion, it seems like they're still in the early stages—lots of debate around API design and porting foundational pieces like SonicBoom. So it might be a while before anything lands, but exciting to see the progress.

Until then, LogTape is one option that tries to fill this gap. And if node:log eventually ships, hopefully the concepts are similar enough that migrating wouldn't be too painful!

Bart Louwers's avatar
Bart Louwers

@bart@floss.social · Reply to 洪 民憙 (Hong Minhee) :nonbinary:'s post

@hongminhee Nice article!

FYI will likely soon have a built-in structured logger. github.com/nodejs/node/issues/

nixCraft 🐧's avatar
nixCraft 🐧

@nixCraft@mastodon.social

Apple will allow alternative browser engines for iPhone and iPad users (iOS/iPadOS) in Japan.

developer.apple.com/support/al

Apple should allow alt engine for the rest of the world too. No point holding it back.

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to 洪 民憙 (Hong Minhee) :nonbinary:'s post

console.log()だけだと本番で困る、でも本格的なロギングは設定が面倒——という方向けに、ちょうどいい落としどころを探る記事を書きました。

https://zenn.dev/hongminhee/articles/e0d19ae2c4e042

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social

I wrote about setting up logging that's more useful than console.log() but doesn't require a Ph.D. in configuration. Covers categories, structured logging, request tracing, and production tips.

https://hackers.pub/@hongminhee/2026/logging-nodejs-deno-bun-2026

洪 民憙 (Hong Minhee)'s avatar
洪 民憙 (Hong Minhee)

@hongminhee@hackers.pub

It's 2 AM. Something is wrong in production. Users are complaining, but you're not sure what's happening—your only clues are a handful of console.log statements you sprinkled around during development. Half of them say things like “here” or “this works.” The other half dump entire objects that scroll off the screen. Good luck.

We've all been there. And yet, setting up “proper” logging often feels like overkill. Traditional logging libraries like winston or Pino come with their own learning curves, configuration formats, and assumptions about how you'll deploy your app. If you're working with edge functions or trying to keep your bundle small, adding a logging library can feel like bringing a sledgehammer to hang a picture frame.

I'm a fan of the “just enough” approach—more than raw console.log, but without the weight of a full-blown logging framework. We'll start from console.log(), understand its real limitations (not the exaggerated ones), and work toward a setup that's actually useful. I'll be using LogTape for the examples—it's a zero-dependency logging library that works across Node.js, Deno, Bun, and edge functions, and stays out of your way when you don't need it.

Starting with console methods—and where they fall short

The console object is JavaScript's great equalizer. It's built-in, it works everywhere, and it requires zero setup. You even get basic severity levels: console.debug(), console.info(), console.warn(), and console.error(). In browser DevTools and some terminal environments, these show up with different colors or icons.

console.debug("Connecting to database...");
console.info("Server started on port 3000");
console.warn("Cache miss for user 123");
console.error("Failed to process payment");

For small scripts or quick debugging, this is perfectly fine. But once your application grows beyond a few files, the cracks start to show:

No filtering without code changes. Want to hide debug messages in production? You'll need to wrap every console.debug() call in a conditional, or find-and-replace them all. There's no way to say “show me only warnings and above” at runtime.

Everything goes to the console. What if you want to write logs to a file? Send errors to Sentry? Stream logs to CloudWatch? You'd have to replace every console.* call with something else—and hope you didn't miss any.

No context about where logs come from. When your app has dozens of modules, a log message like “Connection failed” doesn't tell you much. Was it the database? The cache? A third-party API? You end up prefixing every message manually: console.error("[database] Connection failed").

No structured data. Modern log analysis tools work best with structured data (JSON). But console.log("User logged in", { userId: 123 }) just prints User logged in { userId: 123 } as a string—not very useful for querying later.

Libraries pollute your logs. If you're using a library that logs with console.*, those messages show up whether you want them or not. And if you're writing a library, your users might not appreciate unsolicited log messages.

What you actually need from a logging system

Before diving into code, let's think about what would actually solve the problems above. Not a wish list of features, but the practical stuff that makes a difference when you're debugging at 2 AM or trying to understand why requests are slow.

Log levels with filtering

A logging system should let you categorize messages by severity—trace, debug, info, warning, error, fatal—and then filter them based on what you need. During development, you want to see everything. In production, maybe just warnings and above. The key is being able to change this without touching your code.

Categories

When your app grows beyond a single file, you need to know where logs are coming from. A good logging system lets you tag logs with categories like ["my-app", "database"] or ["my-app", "auth", "oauth"]. Even better, it lets you set different log levels for different categories—maybe you want debug logs from the database module but only warnings from everything else.

Sinks (multiple output destinations)

“Sink” is just a fancy word for “where logs go.” You might want logs to go to the console during development, to files in production, and to an external service like Sentry or CloudWatch for errors. A good logging system lets you configure multiple sinks and route different logs to different destinations.

Structured logging

Instead of logging strings, you log objects with properties. This makes logs machine-readable and queryable:

// Instead of this:
logger.info("User 123 logged in from 192.168.1.1");

// You do this:
logger.info("User logged in", { userId: 123, ip: "192.168.1.1" });

Now you can search for all logs where userId === 123 or filter by IP address.

Context for request tracing

In a web server, you often want all logs from a single request to share a common identifier (like a request ID). This makes it possible to trace a request's journey through your entire system.

Getting started with LogTape

There are plenty of logging libraries out there. winston has been around forever and has a plugin for everything. Pino is fast and outputs JSON. bunyan, log4js, signale—the list goes on.

So why LogTape? A few reasons stood out to me:

Zero dependencies. Not “few dependencies”—actually zero. In an era where a single npm install can pull in hundreds of packages, this matters for security, bundle size, and not having to wonder why your lockfile just changed.

Works everywhere. The same code runs on Node.js, Deno, Bun, browsers, and edge functions like Cloudflare Workers. No polyfills, no conditional imports, no “this feature only works on Node.”

Doesn't force itself on users. If you're writing a library, you can add logging without your users ever knowing—unless they want to see the logs. This is a surprisingly rare feature.

Let's set it up:

npm add @logtape/logtape       # npm
pnpm add @logtape/logtape      # pnpm
yarn add @logtape/logtape      # Yarn
deno add jsr:@logtape/logtape  # Deno
bun add @logtape/logtape       # Bun

Configuration happens once, at your application's entry point:

import { configure, getConsoleSink, getLogger } from "@logtape/logtape";

await configure({
  sinks: {
    console: getConsoleSink(),  // Where logs go
  },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },  // What to log
  ],
});

// Now you can log from anywhere in your app:
const logger = getLogger(["my-app", "server"]);
logger.info`Server started on port 3000`;
logger.debug`Request received: ${{ method: "GET", path: "/api/users" }}`;

Notice a few things:

  1. Configuration is explicit. You decide where logs go (sinks) and which logs to show (lowestLevel).
  2. Categories are hierarchical. The logger ["my-app", "server"] inherits settings from ["my-app"].
  3. Template literals work. You can use backticks for a natural logging syntax.

Categories and filtering: Controlling log verbosity

Here's a scenario: you're debugging a database issue. You want to see every query, every connection attempt, every retry. But you don't want to wade through thousands of HTTP request logs to find them.

Categories let you solve this. Instead of one global log level, you can set different verbosity for different parts of your application.

await configure({
  sinks: {
    console: getConsoleSink(),
  },
  loggers: [
    { category: ["my-app"], lowestLevel: "info", sinks: ["console"] },  // Default: info and above
    { category: ["my-app", "database"], lowestLevel: "debug", sinks: ["console"] },  // DB module: show debug too
  ],
});

Now when you log from different parts of your app:

// In your database module:
const dbLogger = getLogger(["my-app", "database"]);
dbLogger.debug`Executing query: ${sql}`;  // This shows up

// In your HTTP module:
const httpLogger = getLogger(["my-app", "http"]);
httpLogger.debug`Received request`;  // This is filtered out (below "info")
httpLogger.info`GET /api/users 200`;  // This shows up

Controlling third-party library logs

If you're using libraries that also use LogTape, you can control their logs separately:

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },
    // Only show warnings and above from some-library
    { category: ["some-library"], lowestLevel: "warning", sinks: ["console"] },
  ],
});

The root logger

Sometimes you want a catch-all configuration. The root logger (empty category []) catches everything:

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    // Catch all logs at info level
    { category: [], lowestLevel: "info", sinks: ["console"] },
    // But show debug for your app
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },
  ],
});

Log levels and when to use them

LogTape has six log levels. Choosing the right one isn't just about severity—it's about who needs to see the message and when.

Level When to use it
trace Very detailed diagnostic info. Loop iterations, function entry/exit. Usually only enabled when hunting a specific bug.
debug Information useful during development. Variable values, state changes, flow control decisions.
info Normal operational messages. “Server started,” “User logged in,” “Job completed.”
warning Something unexpected happened, but the app can continue. Deprecated API usage, retry attempts, missing optional config.
error Something failed. An operation couldn't complete, but the app is still running.
fatal The app is about to crash or is in an unrecoverable state.
const logger = getLogger(["my-app"]);

logger.trace`Entering processUser function`;
logger.debug`Processing user ${{ userId: 123 }}`;
logger.info`User successfully created`;
logger.warn`Rate limit approaching: ${980}/1000 requests`;
logger.error`Failed to save user: ${error.message}`;
logger.fatal`Database connection lost, shutting down`;

A good rule of thumb: in production, you typically run at info or warning level. During development or when debugging, you drop down to debug or trace.

Structured logging: Beyond plain text

At some point, you'll want to search your logs. “Show me all errors from the payment service in the last hour.” “Find all requests from user 12345.” “What's the average response time for the /api/users endpoint?”

If your logs are plain text strings, these queries are painful. You end up writing regexes, hoping the log format is consistent, and cursing past-you for not thinking ahead.

Structured logging means attaching data to your logs as key-value pairs, not just embedding them in strings. This makes logs machine-readable and queryable.

LogTape supports two syntaxes for this:

Template literals (great for simple messages)

const userId = 123;
const action = "login";
logger.info`User ${userId} performed ${action}`;

Message templates with properties (great for structured data)

logger.info("User performed action", {
  userId: 123,
  action: "login",
  ip: "192.168.1.1",
  timestamp: new Date().toISOString(),
});

You can reference properties in your message using placeholders:

logger.info("User {userId} logged in from {ip}", {
  userId: 123,
  ip: "192.168.1.1",
});
// Output: User 123 logged in from 192.168.1.1

Nested property access

LogTape supports dot notation and array indexing in placeholders:

logger.info("Order {order.id} placed by {order.customer.name}", {
  order: {
    id: "ORD-001",
    customer: { name: "Alice", email: "alice@example.com" },
  },
});

logger.info("First item: {items[0].name}", {
  items: [{ name: "Widget", price: 9.99 }],
});

Machine-readable output with JSON Lines

For production, you often want logs as JSON (one object per line). LogTape has a built-in formatter for this:

import { configure, getConsoleSink, jsonLinesFormatter } from "@logtape/logtape";

await configure({
  sinks: {
    console: getConsoleSink({ formatter: jsonLinesFormatter }),
  },
  loggers: [
    { category: [], lowestLevel: "info", sinks: ["console"] },
  ],
});

Output:

{"@timestamp":"2026-01-15T10:30:00.000Z","level":"INFO","message":"User logged in","logger":"my-app","properties":{"userId":123}}

Sending logs to different destinations (sinks)

So far we've been sending everything to the console. That's fine for development, but in production you'll likely want logs to go elsewhere—or to multiple places at once.

Think about it: console output disappears when the process restarts. If your server crashes at 3 AM, you want those logs to be somewhere persistent. And when an error occurs, you might want it to show up in your error tracking service immediately, not just sit in a log file waiting for someone to grep through it.

This is where sinks come in. A sink is just a function that receives log records and does something with them. LogTape comes with several built-in sinks, and creating your own is trivial.

Console sink

The simplest sink—outputs to the console:

import { getConsoleSink } from "@logtape/logtape";

const consoleSink = getConsoleSink();

File sink

For writing logs to files, install the @logtape/file package:

npm add @logtape/file
import { getFileSink, getRotatingFileSink } from "@logtape/file";

// Simple file sink
const fileSink = getFileSink("app.log");

// Rotating file sink (rotates when file reaches 10MB, keeps 5 old files)
const rotatingFileSink = getRotatingFileSink("app.log", {
  maxSize: 10 * 1024 * 1024,  // 10MB
  maxFiles: 5,
});

Why rotating files? Without rotation, your log file grows indefinitely until it fills up the disk. With rotation, old logs are automatically archived and eventually deleted, keeping disk usage under control. This is especially important for long-running servers.

External services

For production systems, you often want logs to go to specialized services that provide search, alerting, and visualization. LogTape has packages for popular services:

// OpenTelemetry (for observability platforms like Jaeger, Honeycomb, Datadog)
import { getOpenTelemetrySink } from "@logtape/otel";

// Sentry (for error tracking with stack traces and context)
import { getSentrySink } from "@logtape/sentry";

// AWS CloudWatch Logs (for AWS-native log aggregation)
import { getCloudWatchLogsSink } from "@logtape/cloudwatch-logs";

The OpenTelemetry sink is particularly useful if you're already using OpenTelemetry for tracing—your logs will automatically correlate with your traces, making debugging distributed systems much easier.

Multiple sinks

Here's where things get interesting. You can send different logs to different destinations based on their level or category:

await configure({
  sinks: {
    console: getConsoleSink(),
    file: getFileSink("app.log"),
    errors: getSentrySink(),
  },
  loggers: [
    { category: [], lowestLevel: "info", sinks: ["console", "file"] },  // Everything to console + file
    { category: [], lowestLevel: "error", sinks: ["errors"] },  // Errors also go to Sentry
  ],
});

Notice that a log record can go to multiple sinks. An error log in this configuration goes to the console, the file, and Sentry. This lets you have comprehensive local logs while also getting immediate alerts for critical issues.

Custom sinks

Sometimes you need to send logs somewhere that doesn't have a pre-built sink. Maybe you have an internal logging service, or you want to send logs to a Slack channel, or store them in a database.

A sink is just a function that takes a LogRecord. That's it:

import type { Sink } from "@logtape/logtape";

const slackSink: Sink = (record) => {
  // Only send errors and fatals to Slack
  if (record.level === "error" || record.level === "fatal") {
    fetch("https://hooks.slack.com/services/YOUR/WEBHOOK/URL", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        text: `[${record.level.toUpperCase()}] ${record.message.join("")}`,
      }),
    });
  }
};

The simplicity of sink functions means you can integrate LogTape with virtually any logging backend in just a few lines of code.

Request tracing with contexts

Here's a scenario you've probably encountered: a user reports an error, you check the logs, and you find a sea of interleaved messages from dozens of concurrent requests. Which log lines belong to the user's request? Good luck figuring that out.

This is where request tracing comes in. The idea is simple: assign a unique identifier to each request, and include that identifier in every log message produced while handling that request. Now you can filter your logs by request ID and see exactly what happened, in order, for that specific request.

LogTape supports this through contexts—a way to attach properties to log messages without passing them around explicitly.

Explicit context

The simplest approach is to create a logger with attached properties using .with():

function handleRequest(req: Request) {
  const requestId = crypto.randomUUID();
  const logger = getLogger(["my-app", "http"]).with({ requestId });

  logger.info`Request received`;  // Includes requestId automatically
  processRequest(req, logger);
  logger.info`Request completed`;  // Also includes requestId
}

This works well when you're passing the logger around explicitly. But what about code that's deeper in your call stack? What about code in libraries that don't know about your logger instance?

Implicit context

This is where implicit contexts shine. Using withContext(), you can set properties that automatically appear in all log messages within a callback—even in nested function calls, async operations, and third-party libraries (as long as they use LogTape).

First, enable implicit contexts in your configuration:

import { configure, getConsoleSink } from "@logtape/logtape";
import { AsyncLocalStorage } from "node:async_hooks";

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },
  ],
  contextLocalStorage: new AsyncLocalStorage(),
});

Then use withContext() in your request handler:

import { withContext, getLogger } from "@logtape/logtape";

function handleRequest(req: Request) {
  const requestId = crypto.randomUUID();

  return withContext({ requestId }, async () => {
    // Every log message in this callback includes requestId—automatically
    const logger = getLogger(["my-app"]);
    logger.info`Processing request`;

    await validateInput(req);   // Logs here include requestId
    await processBusinessLogic(req);  // Logs here too
    await saveToDatabase(req);  // And here

    logger.info`Request complete`;
  });
}

The magic is that validateInput, processBusinessLogic, and saveToDatabase don't need to know anything about the request ID. They just call getLogger() and log normally, and the request ID appears in their logs automatically. This works even across async boundaries—the context follows the execution flow, not the call stack.

This is incredibly powerful for debugging. When something goes wrong, you can search for the request ID and see every log message from every module that was involved in handling that request.

Framework integrations

Setting up request tracing manually can be tedious. LogTape has dedicated packages for popular frameworks that handle this automatically:

// Express
import { expressLogger } from "@logtape/express";
app.use(expressLogger());

// Fastify
import { getLogTapeFastifyLogger } from "@logtape/fastify";
const app = Fastify({ loggerInstance: getLogTapeFastifyLogger() });

// Hono
import { honoLogger } from "@logtape/hono";
app.use(honoLogger());

// Koa
import { koaLogger } from "@logtape/koa";
app.use(koaLogger());

These middlewares automatically generate request IDs, set up implicit contexts, and log request/response information. You get comprehensive request logging with a single line of code.

Using LogTape in libraries vs applications

If you've ever used a library that spams your console with unwanted log messages, you know how annoying it can be. And if you've ever tried to add logging to your own library, you've faced a dilemma: should you use console.log() and annoy your users? Require them to install and configure a specific logging library? Or just... not log anything?

LogTape solves this with its library-first design. Libraries can add as much logging as they want, and it costs their users nothing unless they explicitly opt in.

If you're writing a library

The rule is simple: use getLogger() to log, but never call configure(). Configuration is the application's responsibility, not the library's.

// my-library/src/database.ts
import { getLogger } from "@logtape/logtape";

const logger = getLogger(["my-library", "database"]);

export function connect(url: string) {
  logger.debug`Connecting to ${url}`;
  // ... connection logic ...
  logger.info`Connected successfully`;
}

What happens when someone uses your library?

If they haven't configured LogTape, nothing happens. The log calls are essentially no-ops—no output, no errors, no performance impact. Your library works exactly as if the logging code wasn't there.

If they have configured LogTape, they get full control. They can see your library's debug logs if they're troubleshooting an issue, or silence them entirely if they're not interested. They decide, not you.

This is fundamentally different from using console.log() in a library. With console.log(), your users have no choice—they see your logs whether they want to or not. With LogTape, you give them the power to decide.

If you're writing an application

You configure LogTape once in your entry point. This single configuration controls logging for your entire application, including any libraries that use LogTape:

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },  // Your app: verbose
    { category: ["my-library"], lowestLevel: "warning", sinks: ["console"] },  // Library: quiet
    { category: ["noisy-library"], lowestLevel: "fatal", sinks: [] },  // That one library: silent
  ],
});

This separation of concerns—libraries log, applications configure—makes for a much healthier ecosystem. Library authors can add detailed logging for debugging without worrying about annoying their users. Application developers can tune logging to their needs without digging through library code.

Migrating from another logger?

If your application already uses winston, Pino, or another logging library, you don't have to migrate everything at once. LogTape provides adapters that route LogTape logs to your existing logging setup:

import { install } from "@logtape/adaptor-winston";
import winston from "winston";

install(winston.createLogger({ /* your existing config */ }));

This is particularly useful when you want to use a library that uses LogTape, but you're not ready to switch your whole application over. The library's logs will flow through your existing winston (or Pino) configuration, and you can migrate gradually if you choose to.

Production considerations

Development and production have different needs. During development, you want verbose logs, pretty formatting, and immediate feedback. In production, you care about performance, reliability, and not leaking sensitive data. Here are some things to keep in mind.

Non-blocking mode

By default, logging is synchronous—when you call logger.info(), the message is written to the sink before the function returns. This is fine for development, but in a high-throughput production environment, the I/O overhead of writing every log message can add up.

Non-blocking mode buffers log messages and writes them in the background:

const consoleSink = getConsoleSink({ nonBlocking: true });
const fileSink = getFileSink("app.log", { nonBlocking: true });

The tradeoff is that logs might be slightly delayed, and if your process crashes, some buffered logs might be lost. But for most production workloads, the performance benefit is worth it.

Sensitive data redaction

Logs have a way of ending up in unexpected places—log aggregation services, debugging sessions, support tickets. If you're logging request data, user information, or API responses, you might accidentally expose sensitive information like passwords, API keys, or personal data.

LogTape's @logtape/redaction package helps you catch these before they become a problem:

import {
  redactByPattern,
  EMAIL_ADDRESS_PATTERN,
  CREDIT_CARD_NUMBER_PATTERN,
  type RedactionPattern,
} from "@logtape/redaction";
import { defaultConsoleFormatter, configure, getConsoleSink } from "@logtape/logtape";

const BEARER_TOKEN_PATTERN: RedactionPattern = {
  pattern: /Bearer [A-Za-z0-9\-._~+\/]+=*/g,
  replacement: "[REDACTED]",
};

const formatter = redactByPattern(defaultConsoleFormatter, [
  EMAIL_ADDRESS_PATTERN,
  CREDIT_CARD_NUMBER_PATTERN,
  BEARER_TOKEN_PATTERN,
]);

await configure({
  sinks: {
    console: getConsoleSink({ formatter }),
  },
  // ...
});

With this configuration, email addresses, credit card numbers, and bearer tokens are automatically replaced with [REDACTED] in your log output. The @logtape/redaction package comes with built-in patterns for common sensitive data types, and you can define custom patterns for anything else. It's not foolproof—you should still be mindful of what you log—but it provides a safety net.

See the redaction documentation for more patterns and field-based redaction.

Edge functions and serverless

Edge functions (Cloudflare Workers, Vercel Edge Functions, etc.) have a unique constraint: they can be terminated immediately after returning a response. If you have buffered logs that haven't been flushed yet, they'll be lost.

The solution is to explicitly flush logs before returning:

import { configure, dispose } from "@logtape/logtape";

export default {
  async fetch(request, env, ctx) {
    await configure({ /* ... */ });
    
    // ... handle request ...
    
    ctx.waitUntil(dispose());  // Flush logs before worker terminates
    
    return new Response("OK");
  },
};

The dispose() function flushes all buffered logs and cleans up resources. By passing it to ctx.waitUntil(), you ensure the worker stays alive long enough to finish writing logs, even after the response has been sent.

Wrapping up

Logging isn't glamorous, but it's one of those things that makes a huge difference when something goes wrong. The setup I've described here—categories for organization, structured data for queryability, contexts for request tracing—isn't complicated, but it's a significant step up from scattered console.log statements.

LogTape isn't the only way to achieve this, but I've found it hits a nice sweet spot: powerful enough for production use, simple enough that you're not fighting the framework, and light enough that you don't feel guilty adding it to a library.

If you want to dig deeper, the LogTape documentation covers advanced topics like custom filters, the “fingers crossed” pattern for buffering debug logs until an error occurs, and more sink options. The GitHub repository is also a good place to report issues or see what's coming next.

Now go add some proper logging to that side project you've been meaning to clean up. Your future 2 AM self will thank you.

洪 民憙 (Hong Minhee)'s avatar
洪 民憙 (Hong Minhee)

@hongminhee@hackers.pub

It's 2 AM. Something is wrong in production. Users are complaining, but you're not sure what's happening—your only clues are a handful of console.log statements you sprinkled around during development. Half of them say things like “here” or “this works.” The other half dump entire objects that scroll off the screen. Good luck.

We've all been there. And yet, setting up “proper” logging often feels like overkill. Traditional logging libraries like winston or Pino come with their own learning curves, configuration formats, and assumptions about how you'll deploy your app. If you're working with edge functions or trying to keep your bundle small, adding a logging library can feel like bringing a sledgehammer to hang a picture frame.

I'm a fan of the “just enough” approach—more than raw console.log, but without the weight of a full-blown logging framework. We'll start from console.log(), understand its real limitations (not the exaggerated ones), and work toward a setup that's actually useful. I'll be using LogTape for the examples—it's a zero-dependency logging library that works across Node.js, Deno, Bun, and edge functions, and stays out of your way when you don't need it.

Starting with console methods—and where they fall short

The console object is JavaScript's great equalizer. It's built-in, it works everywhere, and it requires zero setup. You even get basic severity levels: console.debug(), console.info(), console.warn(), and console.error(). In browser DevTools and some terminal environments, these show up with different colors or icons.

console.debug("Connecting to database...");
console.info("Server started on port 3000");
console.warn("Cache miss for user 123");
console.error("Failed to process payment");

For small scripts or quick debugging, this is perfectly fine. But once your application grows beyond a few files, the cracks start to show:

No filtering without code changes. Want to hide debug messages in production? You'll need to wrap every console.debug() call in a conditional, or find-and-replace them all. There's no way to say “show me only warnings and above” at runtime.

Everything goes to the console. What if you want to write logs to a file? Send errors to Sentry? Stream logs to CloudWatch? You'd have to replace every console.* call with something else—and hope you didn't miss any.

No context about where logs come from. When your app has dozens of modules, a log message like “Connection failed” doesn't tell you much. Was it the database? The cache? A third-party API? You end up prefixing every message manually: console.error("[database] Connection failed").

No structured data. Modern log analysis tools work best with structured data (JSON). But console.log("User logged in", { userId: 123 }) just prints User logged in { userId: 123 } as a string—not very useful for querying later.

Libraries pollute your logs. If you're using a library that logs with console.*, those messages show up whether you want them or not. And if you're writing a library, your users might not appreciate unsolicited log messages.

What you actually need from a logging system

Before diving into code, let's think about what would actually solve the problems above. Not a wish list of features, but the practical stuff that makes a difference when you're debugging at 2 AM or trying to understand why requests are slow.

Log levels with filtering

A logging system should let you categorize messages by severity—trace, debug, info, warning, error, fatal—and then filter them based on what you need. During development, you want to see everything. In production, maybe just warnings and above. The key is being able to change this without touching your code.

Categories

When your app grows beyond a single file, you need to know where logs are coming from. A good logging system lets you tag logs with categories like ["my-app", "database"] or ["my-app", "auth", "oauth"]. Even better, it lets you set different log levels for different categories—maybe you want debug logs from the database module but only warnings from everything else.

Sinks (multiple output destinations)

“Sink” is just a fancy word for “where logs go.” You might want logs to go to the console during development, to files in production, and to an external service like Sentry or CloudWatch for errors. A good logging system lets you configure multiple sinks and route different logs to different destinations.

Structured logging

Instead of logging strings, you log objects with properties. This makes logs machine-readable and queryable:

// Instead of this:
logger.info("User 123 logged in from 192.168.1.1");

// You do this:
logger.info("User logged in", { userId: 123, ip: "192.168.1.1" });

Now you can search for all logs where userId === 123 or filter by IP address.

Context for request tracing

In a web server, you often want all logs from a single request to share a common identifier (like a request ID). This makes it possible to trace a request's journey through your entire system.

Getting started with LogTape

There are plenty of logging libraries out there. winston has been around forever and has a plugin for everything. Pino is fast and outputs JSON. bunyan, log4js, signale—the list goes on.

So why LogTape? A few reasons stood out to me:

Zero dependencies. Not “few dependencies”—actually zero. In an era where a single npm install can pull in hundreds of packages, this matters for security, bundle size, and not having to wonder why your lockfile just changed.

Works everywhere. The same code runs on Node.js, Deno, Bun, browsers, and edge functions like Cloudflare Workers. No polyfills, no conditional imports, no “this feature only works on Node.”

Doesn't force itself on users. If you're writing a library, you can add logging without your users ever knowing—unless they want to see the logs. This is a surprisingly rare feature.

Let's set it up:

npm add @logtape/logtape       # npm
pnpm add @logtape/logtape      # pnpm
yarn add @logtape/logtape      # Yarn
deno add jsr:@logtape/logtape  # Deno
bun add @logtape/logtape       # Bun

Configuration happens once, at your application's entry point:

import { configure, getConsoleSink, getLogger } from "@logtape/logtape";

await configure({
  sinks: {
    console: getConsoleSink(),  // Where logs go
  },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },  // What to log
  ],
});

// Now you can log from anywhere in your app:
const logger = getLogger(["my-app", "server"]);
logger.info`Server started on port 3000`;
logger.debug`Request received: ${{ method: "GET", path: "/api/users" }}`;

Notice a few things:

  1. Configuration is explicit. You decide where logs go (sinks) and which logs to show (lowestLevel).
  2. Categories are hierarchical. The logger ["my-app", "server"] inherits settings from ["my-app"].
  3. Template literals work. You can use backticks for a natural logging syntax.

Categories and filtering: Controlling log verbosity

Here's a scenario: you're debugging a database issue. You want to see every query, every connection attempt, every retry. But you don't want to wade through thousands of HTTP request logs to find them.

Categories let you solve this. Instead of one global log level, you can set different verbosity for different parts of your application.

await configure({
  sinks: {
    console: getConsoleSink(),
  },
  loggers: [
    { category: ["my-app"], lowestLevel: "info", sinks: ["console"] },  // Default: info and above
    { category: ["my-app", "database"], lowestLevel: "debug", sinks: ["console"] },  // DB module: show debug too
  ],
});

Now when you log from different parts of your app:

// In your database module:
const dbLogger = getLogger(["my-app", "database"]);
dbLogger.debug`Executing query: ${sql}`;  // This shows up

// In your HTTP module:
const httpLogger = getLogger(["my-app", "http"]);
httpLogger.debug`Received request`;  // This is filtered out (below "info")
httpLogger.info`GET /api/users 200`;  // This shows up

Controlling third-party library logs

If you're using libraries that also use LogTape, you can control their logs separately:

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },
    // Only show warnings and above from some-library
    { category: ["some-library"], lowestLevel: "warning", sinks: ["console"] },
  ],
});

The root logger

Sometimes you want a catch-all configuration. The root logger (empty category []) catches everything:

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    // Catch all logs at info level
    { category: [], lowestLevel: "info", sinks: ["console"] },
    // But show debug for your app
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },
  ],
});

Log levels and when to use them

LogTape has six log levels. Choosing the right one isn't just about severity—it's about who needs to see the message and when.

Level When to use it
trace Very detailed diagnostic info. Loop iterations, function entry/exit. Usually only enabled when hunting a specific bug.
debug Information useful during development. Variable values, state changes, flow control decisions.
info Normal operational messages. “Server started,” “User logged in,” “Job completed.”
warning Something unexpected happened, but the app can continue. Deprecated API usage, retry attempts, missing optional config.
error Something failed. An operation couldn't complete, but the app is still running.
fatal The app is about to crash or is in an unrecoverable state.
const logger = getLogger(["my-app"]);

logger.trace`Entering processUser function`;
logger.debug`Processing user ${{ userId: 123 }}`;
logger.info`User successfully created`;
logger.warn`Rate limit approaching: ${980}/1000 requests`;
logger.error`Failed to save user: ${error.message}`;
logger.fatal`Database connection lost, shutting down`;

A good rule of thumb: in production, you typically run at info or warning level. During development or when debugging, you drop down to debug or trace.

Structured logging: Beyond plain text

At some point, you'll want to search your logs. “Show me all errors from the payment service in the last hour.” “Find all requests from user 12345.” “What's the average response time for the /api/users endpoint?”

If your logs are plain text strings, these queries are painful. You end up writing regexes, hoping the log format is consistent, and cursing past-you for not thinking ahead.

Structured logging means attaching data to your logs as key-value pairs, not just embedding them in strings. This makes logs machine-readable and queryable.

LogTape supports two syntaxes for this:

Template literals (great for simple messages)

const userId = 123;
const action = "login";
logger.info`User ${userId} performed ${action}`;

Message templates with properties (great for structured data)

logger.info("User performed action", {
  userId: 123,
  action: "login",
  ip: "192.168.1.1",
  timestamp: new Date().toISOString(),
});

You can reference properties in your message using placeholders:

logger.info("User {userId} logged in from {ip}", {
  userId: 123,
  ip: "192.168.1.1",
});
// Output: User 123 logged in from 192.168.1.1

Nested property access

LogTape supports dot notation and array indexing in placeholders:

logger.info("Order {order.id} placed by {order.customer.name}", {
  order: {
    id: "ORD-001",
    customer: { name: "Alice", email: "alice@example.com" },
  },
});

logger.info("First item: {items[0].name}", {
  items: [{ name: "Widget", price: 9.99 }],
});

Machine-readable output with JSON Lines

For production, you often want logs as JSON (one object per line). LogTape has a built-in formatter for this:

import { configure, getConsoleSink, jsonLinesFormatter } from "@logtape/logtape";

await configure({
  sinks: {
    console: getConsoleSink({ formatter: jsonLinesFormatter }),
  },
  loggers: [
    { category: [], lowestLevel: "info", sinks: ["console"] },
  ],
});

Output:

{"@timestamp":"2026-01-15T10:30:00.000Z","level":"INFO","message":"User logged in","logger":"my-app","properties":{"userId":123}}

Sending logs to different destinations (sinks)

So far we've been sending everything to the console. That's fine for development, but in production you'll likely want logs to go elsewhere—or to multiple places at once.

Think about it: console output disappears when the process restarts. If your server crashes at 3 AM, you want those logs to be somewhere persistent. And when an error occurs, you might want it to show up in your error tracking service immediately, not just sit in a log file waiting for someone to grep through it.

This is where sinks come in. A sink is just a function that receives log records and does something with them. LogTape comes with several built-in sinks, and creating your own is trivial.

Console sink

The simplest sink—outputs to the console:

import { getConsoleSink } from "@logtape/logtape";

const consoleSink = getConsoleSink();

File sink

For writing logs to files, install the @logtape/file package:

npm add @logtape/file
import { getFileSink, getRotatingFileSink } from "@logtape/file";

// Simple file sink
const fileSink = getFileSink("app.log");

// Rotating file sink (rotates when file reaches 10MB, keeps 5 old files)
const rotatingFileSink = getRotatingFileSink("app.log", {
  maxSize: 10 * 1024 * 1024,  // 10MB
  maxFiles: 5,
});

Why rotating files? Without rotation, your log file grows indefinitely until it fills up the disk. With rotation, old logs are automatically archived and eventually deleted, keeping disk usage under control. This is especially important for long-running servers.

External services

For production systems, you often want logs to go to specialized services that provide search, alerting, and visualization. LogTape has packages for popular services:

// OpenTelemetry (for observability platforms like Jaeger, Honeycomb, Datadog)
import { getOpenTelemetrySink } from "@logtape/otel";

// Sentry (for error tracking with stack traces and context)
import { getSentrySink } from "@logtape/sentry";

// AWS CloudWatch Logs (for AWS-native log aggregation)
import { getCloudWatchLogsSink } from "@logtape/cloudwatch-logs";

The OpenTelemetry sink is particularly useful if you're already using OpenTelemetry for tracing—your logs will automatically correlate with your traces, making debugging distributed systems much easier.

Multiple sinks

Here's where things get interesting. You can send different logs to different destinations based on their level or category:

await configure({
  sinks: {
    console: getConsoleSink(),
    file: getFileSink("app.log"),
    errors: getSentrySink(),
  },
  loggers: [
    { category: [], lowestLevel: "info", sinks: ["console", "file"] },  // Everything to console + file
    { category: [], lowestLevel: "error", sinks: ["errors"] },  // Errors also go to Sentry
  ],
});

Notice that a log record can go to multiple sinks. An error log in this configuration goes to the console, the file, and Sentry. This lets you have comprehensive local logs while also getting immediate alerts for critical issues.

Custom sinks

Sometimes you need to send logs somewhere that doesn't have a pre-built sink. Maybe you have an internal logging service, or you want to send logs to a Slack channel, or store them in a database.

A sink is just a function that takes a LogRecord. That's it:

import type { Sink } from "@logtape/logtape";

const slackSink: Sink = (record) => {
  // Only send errors and fatals to Slack
  if (record.level === "error" || record.level === "fatal") {
    fetch("https://hooks.slack.com/services/YOUR/WEBHOOK/URL", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        text: `[${record.level.toUpperCase()}] ${record.message.join("")}`,
      }),
    });
  }
};

The simplicity of sink functions means you can integrate LogTape with virtually any logging backend in just a few lines of code.

Request tracing with contexts

Here's a scenario you've probably encountered: a user reports an error, you check the logs, and you find a sea of interleaved messages from dozens of concurrent requests. Which log lines belong to the user's request? Good luck figuring that out.

This is where request tracing comes in. The idea is simple: assign a unique identifier to each request, and include that identifier in every log message produced while handling that request. Now you can filter your logs by request ID and see exactly what happened, in order, for that specific request.

LogTape supports this through contexts—a way to attach properties to log messages without passing them around explicitly.

Explicit context

The simplest approach is to create a logger with attached properties using .with():

function handleRequest(req: Request) {
  const requestId = crypto.randomUUID();
  const logger = getLogger(["my-app", "http"]).with({ requestId });

  logger.info`Request received`;  // Includes requestId automatically
  processRequest(req, logger);
  logger.info`Request completed`;  // Also includes requestId
}

This works well when you're passing the logger around explicitly. But what about code that's deeper in your call stack? What about code in libraries that don't know about your logger instance?

Implicit context

This is where implicit contexts shine. Using withContext(), you can set properties that automatically appear in all log messages within a callback—even in nested function calls, async operations, and third-party libraries (as long as they use LogTape).

First, enable implicit contexts in your configuration:

import { configure, getConsoleSink } from "@logtape/logtape";
import { AsyncLocalStorage } from "node:async_hooks";

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },
  ],
  contextLocalStorage: new AsyncLocalStorage(),
});

Then use withContext() in your request handler:

import { withContext, getLogger } from "@logtape/logtape";

function handleRequest(req: Request) {
  const requestId = crypto.randomUUID();

  return withContext({ requestId }, async () => {
    // Every log message in this callback includes requestId—automatically
    const logger = getLogger(["my-app"]);
    logger.info`Processing request`;

    await validateInput(req);   // Logs here include requestId
    await processBusinessLogic(req);  // Logs here too
    await saveToDatabase(req);  // And here

    logger.info`Request complete`;
  });
}

The magic is that validateInput, processBusinessLogic, and saveToDatabase don't need to know anything about the request ID. They just call getLogger() and log normally, and the request ID appears in their logs automatically. This works even across async boundaries—the context follows the execution flow, not the call stack.

This is incredibly powerful for debugging. When something goes wrong, you can search for the request ID and see every log message from every module that was involved in handling that request.

Framework integrations

Setting up request tracing manually can be tedious. LogTape has dedicated packages for popular frameworks that handle this automatically:

// Express
import { expressLogger } from "@logtape/express";
app.use(expressLogger());

// Fastify
import { getLogTapeFastifyLogger } from "@logtape/fastify";
const app = Fastify({ loggerInstance: getLogTapeFastifyLogger() });

// Hono
import { honoLogger } from "@logtape/hono";
app.use(honoLogger());

// Koa
import { koaLogger } from "@logtape/koa";
app.use(koaLogger());

These middlewares automatically generate request IDs, set up implicit contexts, and log request/response information. You get comprehensive request logging with a single line of code.

Using LogTape in libraries vs applications

If you've ever used a library that spams your console with unwanted log messages, you know how annoying it can be. And if you've ever tried to add logging to your own library, you've faced a dilemma: should you use console.log() and annoy your users? Require them to install and configure a specific logging library? Or just... not log anything?

LogTape solves this with its library-first design. Libraries can add as much logging as they want, and it costs their users nothing unless they explicitly opt in.

If you're writing a library

The rule is simple: use getLogger() to log, but never call configure(). Configuration is the application's responsibility, not the library's.

// my-library/src/database.ts
import { getLogger } from "@logtape/logtape";

const logger = getLogger(["my-library", "database"]);

export function connect(url: string) {
  logger.debug`Connecting to ${url}`;
  // ... connection logic ...
  logger.info`Connected successfully`;
}

What happens when someone uses your library?

If they haven't configured LogTape, nothing happens. The log calls are essentially no-ops—no output, no errors, no performance impact. Your library works exactly as if the logging code wasn't there.

If they have configured LogTape, they get full control. They can see your library's debug logs if they're troubleshooting an issue, or silence them entirely if they're not interested. They decide, not you.

This is fundamentally different from using console.log() in a library. With console.log(), your users have no choice—they see your logs whether they want to or not. With LogTape, you give them the power to decide.

If you're writing an application

You configure LogTape once in your entry point. This single configuration controls logging for your entire application, including any libraries that use LogTape:

await configure({
  sinks: { console: getConsoleSink() },
  loggers: [
    { category: ["my-app"], lowestLevel: "debug", sinks: ["console"] },  // Your app: verbose
    { category: ["my-library"], lowestLevel: "warning", sinks: ["console"] },  // Library: quiet
    { category: ["noisy-library"], lowestLevel: "fatal", sinks: [] },  // That one library: silent
  ],
});

This separation of concerns—libraries log, applications configure—makes for a much healthier ecosystem. Library authors can add detailed logging for debugging without worrying about annoying their users. Application developers can tune logging to their needs without digging through library code.

Migrating from another logger?

If your application already uses winston, Pino, or another logging library, you don't have to migrate everything at once. LogTape provides adapters that route LogTape logs to your existing logging setup:

import { install } from "@logtape/adaptor-winston";
import winston from "winston";

install(winston.createLogger({ /* your existing config */ }));

This is particularly useful when you want to use a library that uses LogTape, but you're not ready to switch your whole application over. The library's logs will flow through your existing winston (or Pino) configuration, and you can migrate gradually if you choose to.

Production considerations

Development and production have different needs. During development, you want verbose logs, pretty formatting, and immediate feedback. In production, you care about performance, reliability, and not leaking sensitive data. Here are some things to keep in mind.

Non-blocking mode

By default, logging is synchronous—when you call logger.info(), the message is written to the sink before the function returns. This is fine for development, but in a high-throughput production environment, the I/O overhead of writing every log message can add up.

Non-blocking mode buffers log messages and writes them in the background:

const consoleSink = getConsoleSink({ nonBlocking: true });
const fileSink = getFileSink("app.log", { nonBlocking: true });

The tradeoff is that logs might be slightly delayed, and if your process crashes, some buffered logs might be lost. But for most production workloads, the performance benefit is worth it.

Sensitive data redaction

Logs have a way of ending up in unexpected places—log aggregation services, debugging sessions, support tickets. If you're logging request data, user information, or API responses, you might accidentally expose sensitive information like passwords, API keys, or personal data.

LogTape's @logtape/redaction package helps you catch these before they become a problem:

import {
  redactByPattern,
  EMAIL_ADDRESS_PATTERN,
  CREDIT_CARD_NUMBER_PATTERN,
  type RedactionPattern,
} from "@logtape/redaction";
import { defaultConsoleFormatter, configure, getConsoleSink } from "@logtape/logtape";

const BEARER_TOKEN_PATTERN: RedactionPattern = {
  pattern: /Bearer [A-Za-z0-9\-._~+\/]+=*/g,
  replacement: "[REDACTED]",
};

const formatter = redactByPattern(defaultConsoleFormatter, [
  EMAIL_ADDRESS_PATTERN,
  CREDIT_CARD_NUMBER_PATTERN,
  BEARER_TOKEN_PATTERN,
]);

await configure({
  sinks: {
    console: getConsoleSink({ formatter }),
  },
  // ...
});

With this configuration, email addresses, credit card numbers, and bearer tokens are automatically replaced with [REDACTED] in your log output. The @logtape/redaction package comes with built-in patterns for common sensitive data types, and you can define custom patterns for anything else. It's not foolproof—you should still be mindful of what you log—but it provides a safety net.

See the redaction documentation for more patterns and field-based redaction.

Edge functions and serverless

Edge functions (Cloudflare Workers, Vercel Edge Functions, etc.) have a unique constraint: they can be terminated immediately after returning a response. If you have buffered logs that haven't been flushed yet, they'll be lost.

The solution is to explicitly flush logs before returning:

import { configure, dispose } from "@logtape/logtape";

export default {
  async fetch(request, env, ctx) {
    await configure({ /* ... */ });
    
    // ... handle request ...
    
    ctx.waitUntil(dispose());  // Flush logs before worker terminates
    
    return new Response("OK");
  },
};

The dispose() function flushes all buffered logs and cleans up resources. By passing it to ctx.waitUntil(), you ensure the worker stays alive long enough to finish writing logs, even after the response has been sent.

Wrapping up

Logging isn't glamorous, but it's one of those things that makes a huge difference when something goes wrong. The setup I've described here—categories for organization, structured data for queryability, contexts for request tracing—isn't complicated, but it's a significant step up from scattered console.log statements.

LogTape isn't the only way to achieve this, but I've found it hits a nice sweet spot: powerful enough for production use, simple enough that you're not fighting the framework, and light enough that you don't feel guilty adding it to a library.

If you want to dig deeper, the LogTape documentation covers advanced topics like custom filters, the “fingers crossed” pattern for buffering debug logs until an error occurs, and more sink options. The GitHub repository is also a good place to report issues or see what's coming next.

Now go add some proper logging to that side project you've been meaning to clean up. Your future 2 AM self will thank you.

오브젝티프's avatar
오브젝티프

@objectif@mitir.social

이걸 보니 재밌다는 생각이 들었다

- '잠시' 나 '잠깐' 은 현대 한국어 회화에서 '짧은 시간' 으로 쓰임.
- 그런데 'しばらく' 로 번역된 것을 보니 응?! 하는 느낌. 왜?
- "잠시만 기다려 주십시오"는 짧은 기다림 (예: 은행 ATM 에서 출금 직전 뜨는 문구)
- "しばらくお待ちください"는 왠지 그보다 길다는 느낌이 듦 (예: OS 업데이트 중, 'しばらく' 소요)
- 그냥 주관적 느낌인가? 그런데 회화에서 "やあ、しばらくだね" 할 수 있음. "여어, 오랜만이네" 로 옮겨야 함. 이게 바로 주관적 차이를 넘어서는 위화감의 정체. 한국어의 '잠시', '잠깐' 엔 불가능한 용법
- 그럼 일본 ATM 등에는 뭐라고 뜰까? "잠시만 기다려 주십시오" 로 가장 널리 쓰이는 것은 "少々 お待ちください". 즉 'しばらく' 는 너무 길게 느껴질 수도 있으므로, 더 짧은 시간을 나타내려는 수요가 작용하는 것
- 그럼 "잠시 앉은 상태로 잠이 들었습니다"는 어떻게 번역해야 할까?
- 'つかの間', '瞬時', '一時', '一刻' 등이 '잠시', '잠깐'에 대응하기는 하지만, 어째 모두 문어체...?! 구어에선 어색함. 게다가 '잠시 후'에 대응하는 '間もなく', 'やがて' 등도 격식 표현
- 일본어 구어는 짧은 '시간'을 따로 쓰기보단, '약간'을 뜻하는 일반적 부사에 더 의지. 따라서 ちょっと座ったまま眠っちゃいました 정도가 구어로 자연스러울 듯.
- (한편 '居眠り' 가 '앉아서 졸기' 의 뜻이 있긴 하지만, 구어에선 다양한 다른 '졸음' 으로도 쓰여서, '座ったまま眠る' 가 원문 의도를 더 살릴 듯)
- 한국어의 '잠시' 는 구어적 지위가 튼튼함. 최근에 퍼진 것도 아니고, 정선 아리랑에도 "잠시 잠깐 임 그리워서" 로 나올 만큼 예전부터 확고함. 영어의 'moment' 에 거의 깔끔하게 대응하고, 명사(moment)로도 부사(for a moment)로도 널리 쓰임.
- 그 결과, "Wait a moment" 는 한국어에서 "잠깐 기다려" ("조금 기다려" 보다는 '잠깐' 이 더 자연스러움)
- 반면 일본어에서는 "ちょっと 待て" 이고, 'ちょっと' 대신 시간 의미 있는 말 억지로 넣으면 어색
- '짧은 시간 동안' 일어난 사건을 강조하려는 경우, 차라리 아예 단위 를 넣어야. 예: "あれ、居眠りで何分も過ぎてしまった" 는 구어체로 성립

저도 이 미묘하고도 넘을 수 없는 차이를 느낌으로만 갖고 있다가, 덕분에 명확히 인지했습니다. 감사합니다.

RE: https://iqhina.org/notes/agy09nke0w
洪 民憙 (Hong Minhee)'s avatar
洪 民憙 (Hong Minhee)

@hongminhee@hackers.pub

So you need to send emails from your JavaScript application. Email remains one of the most essential features in web apps—welcome emails, password resets, notifications—but the ecosystem is fragmented. Nodemailer doesn't work on edge functions. Each provider has its own SDK. And if you're using Deno or Bun, good luck finding libraries that actually work.

This guide covers how to send emails across modern JavaScript runtimes using Upyo, a cross-runtime email library.

TL;DR for the impatient

If you just want working code, here's the quickest path to sending an email:

import { createMessage } from "@upyo/core";
import { SmtpTransport } from "@upyo/smtp";

const transport = new SmtpTransport({
  host: "smtp.gmail.com",
  port: 465,
  secure: true,
  auth: {
    user: "your-email@gmail.com",
    pass: "your-app-password", // Not your regular password!
  },
});

const message = createMessage({
  from: "your-email@gmail.com",
  to: "recipient@example.com",
  subject: "Hello from my app!",
  content: { text: "This is my first email." },
});

const receipt = await transport.send(message);
if (receipt.successful) {
  console.log("Sent:", receipt.messageId);
} else {
  console.log("Failed:", receipt.errorMessages);
}

Install with:

npm add @upyo/core @upyo/smtp

That's it. This exact code works on Node.js, Deno, and Bun. But if you want to understand what's happening and explore more powerful options, read on.


Why Upyo?

  • Cross-runtime: Works on Node.js, Deno, Bun, and edge functions with the same API
  • Zero dependencies: Keeps your bundle small
  • Provider independence: Switch between SMTP, Mailgun, Resend, SendGrid, or Amazon SES without changing your application code
  • Type-safe: Full TypeScript support with discriminated unions for error handling
  • Built for testing: Includes a mock transport for unit tests

Part 1: Getting started with Gmail SMTP

Let's start with the most accessible option: Gmail's SMTP server. It's free, requires no additional accounts, and works great for development and low-volume production use.

Step 1: Generate a Gmail app password

Gmail doesn't allow you to use your regular password for SMTP. You need to create an app-specific password:

  1. Go to your Google Account
  2. Navigate to Security2-Step Verification (enable it if you haven't)
  3. At the bottom, click App passwords
  4. Select Mail and your device, then click Generate
  5. Copy the 16-character password

Step 2: Install dependencies

Choose your runtime and package manager:

Node.js

npm add @upyo/core @upyo/smtp
# or: pnpm add @upyo/core @upyo/smtp
# or: yarn add @upyo/core @upyo/smtp

Deno

deno add jsr:@upyo/core jsr:@upyo/smtp

Bun

bun add @upyo/core @upyo/smtp

The same code works across all three runtimes—that's the beauty of Upyo.

Step 3: Send your first email

import { createMessage } from "@upyo/core";
import { SmtpTransport } from "@upyo/smtp";

// Create the transport (reuse this for multiple emails)
const transport = new SmtpTransport({
  host: "smtp.gmail.com",
  port: 465,
  secure: true,
  auth: {
    user: "your-email@gmail.com",
    pass: "abcd efgh ijkl mnop", // Your app password
  },
});

// Create and send a message
const message = createMessage({
  from: "your-email@gmail.com",
  to: "recipient@example.com",
  subject: "Welcome to my app!",
  content: {
    text: "Thanks for signing up. We're excited to have you!",
    html: "<h1>Welcome!</h1><p>Thanks for signing up. We're excited to have you!</p>",
  },
});

const receipt = await transport.send(message);

if (receipt.successful) {
  console.log("Email sent successfully! Message ID:", receipt.messageId);
} else {
  console.error("Failed to send email:", receipt.errorMessages.join(", "));
}

// Don't forget to close connections when done
await transport.closeAllConnections();

Let me highlight a few important details:

  • secure: true with port 465: This establishes a TLS-encrypted connection from the start. Gmail requires encryption, so this combination is essential.
  • Separate text and html content: Always provide both. Some email clients don't render HTML, and spam filters look more favorably on emails with plain text alternatives.
  • The receipt pattern: Upyo uses discriminated unions for type-safe error handling. When receipt.successful is true, you get messageId. When it's false, you get errorMessages. This makes it impossible to forget error handling.
  • Closing connections: SMTP maintains persistent TCP connections. Always close them when you're done, or use await using (shown next) to handle this automatically.

Pro tip: automatic resource cleanup with await using

Managing resources manually is error-prone—what if an exception occurs before closeAllConnections() is called? Modern JavaScript (ES2024) solves this with explicit resource management.

import { createMessage } from "@upyo/core";
import { SmtpTransport } from "@upyo/smtp";

// Transport is automatically disposed when it goes out of scope
await using transport = new SmtpTransport({
  host: "smtp.gmail.com",
  port: 465,
  secure: true,
  auth: {
    user: "your-email@gmail.com",
    pass: "your-app-password",
  },
});

const message = createMessage({
  from: "your-email@gmail.com",
  to: "recipient@example.com",
  subject: "Hello!",
  content: { text: "This email was sent with automatic cleanup!" },
});

await transport.send(message);
// No need to call `closeAllConnections()` - it happens automatically!

The await using keyword tells JavaScript to call the transport's cleanup method when execution leaves this scope—even if an error is thrown. This pattern is similar to Python's with statement or C#'s using block. It's supported in Node.js 22+, Deno, and Bun.

What if your environment doesn't support await using?

For older Node.js versions or environments without ES2024 support, use try/finally to ensure cleanup:

const transport = new SmtpTransport({
  host: "smtp.gmail.com",
  port: 465,
  secure: true,
  auth: { user: "your-email@gmail.com", pass: "your-app-password" },
});

try {
  await transport.send(message);
} finally {
  await transport.closeAllConnections();
}

This achieves the same result—cleanup happens whether the send succeeds or throws an error.


Part 2: Adding attachments and rich content

Real-world emails often need more than plain text.

HTML emails with inline images

Inline images appear directly in the email body rather than as downloadable attachments. The trick is to reference them using a Content-ID (CID) URL scheme.

import { createMessage } from "@upyo/core";
import { SmtpTransport } from "@upyo/smtp";
import { readFile } from "node:fs/promises";

await using transport = new SmtpTransport({
  host: "smtp.gmail.com",
  port: 465,
  secure: true,
  auth: { user: "your-email@gmail.com", pass: "your-app-password" },
});

// Read your logo file
const logoContent = await readFile("./assets/logo.png");

const message = createMessage({
  from: "your-email@gmail.com",
  to: "customer@example.com",
  subject: "Your order confirmation",
  content: {
    html: `
      <div style="font-family: sans-serif; max-width: 600px; margin: 0 auto;">
        <img src="cid:company-logo" alt="Company Logo" style="width: 150px;">
        <h1>Order Confirmed!</h1>
        <p>Thank you for your purchase. Your order #12345 has been confirmed.</p>
      </div>
    `,
    text: "Order Confirmed! Thank you for your purchase. Your order #12345 has been confirmed.",
  },
  attachments: [
    {
      filename: "logo.png",
      content: logoContent,
      contentType: "image/png",
      contentId: "company-logo", // Referenced as cid:company-logo in HTML
      inline: true,
    },
  ],
});

await transport.send(message);

Key points about inline images:

  • contentId: This is the identifier you use in the HTML's src="cid:..." attribute. It can be any unique string.
  • inline: true: This tells the email client to display the image within the message body, not as a separate attachment.
  • Always include alt text: Some email clients block images by default, so the alt text ensures your message is still understandable.

File attachments

For regular attachments that recipients can download, use the standard File API. This approach works across all JavaScript runtimes.

import { createMessage } from "@upyo/core";
import { SmtpTransport } from "@upyo/smtp";
import { readFile } from "node:fs/promises";

await using transport = new SmtpTransport({
  host: "smtp.gmail.com",
  port: 465,
  secure: true,
  auth: { user: "your-email@gmail.com", pass: "your-app-password" },
});

// Read files to attach
const invoicePdf = await readFile("./invoices/invoice-2024-001.pdf");
const reportXlsx = await readFile("./reports/monthly-report.xlsx");

const message = createMessage({
  from: "billing@yourcompany.com",
  to: "client@example.com",
  cc: "accounting@yourcompany.com",
  subject: "Invoice #2024-001",
  content: {
    text: "Please find your invoice and monthly report attached.",
  },
  attachments: [
    new File([invoicePdf], "invoice-2024-001.pdf", { type: "application/pdf" }),
    new File([reportXlsx], "monthly-report.xlsx", {
      type: "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
    }),
  ],
  priority: "high", // Sets email priority headers
});

await transport.send(message);

A few notes on attachments:

  • MIME types matter: Setting the correct type helps email clients display the right icon and open the file with the appropriate application.
  • priority: "high": This sets the X-Priority header, which some email clients use to highlight important messages. Use it sparingly—overuse can trigger spam filters.

Multiple recipients with different roles

Email supports several recipient types, each with different visibility rules:

import { createMessage } from "@upyo/core";

const message = createMessage({
  from: { name: "Support Team", address: "support@yourcompany.com" },
  to: [
    "primary-recipient@example.com",
    { name: "John Smith", address: "john@example.com" },
  ],
  cc: "manager@yourcompany.com",
  bcc: ["archive@yourcompany.com", "compliance@yourcompany.com"],
  replyTo: "no-reply@yourcompany.com",
  subject: "Your support ticket has been updated",
  content: { text: "We've responded to your ticket #5678." },
});

Understanding recipient types:

  • to: Primary recipients. Everyone can see who else is in this field.
  • cc (Carbon Copy): Secondary recipients. Visible to all recipients—use for people who should be informed but aren't the primary audience.
  • bcc (Blind Carbon Copy): Hidden recipients. No one can see BCC addresses—useful for archiving or compliance without revealing internal processes.
  • replyTo: Where replies should go. Useful when sending from a no-reply address but wanting responses to reach a real inbox.

You can specify addresses as simple strings ("email@example.com") or as objects with name and address properties for display names.


Part 3: Moving to production with email service providers

Gmail SMTP is great for getting started, but for production applications, you'll want a dedicated email service provider. Here's why:

  • Higher sending limits: Gmail caps you at ~500 emails/day for personal accounts
  • Better deliverability: Dedicated services maintain sender reputation and handle bounces properly
  • Analytics and tracking: See who opened your emails, clicked links, etc.
  • Webhook notifications: Get real-time callbacks for delivery events
  • No dependency on personal accounts: Production systems shouldn't rely on someone's Gmail

The best part? With Upyo, switching providers requires minimal code changes—just swap the transport.

Option A: Resend (modern and developer-friendly)

Resend is a newer email service with an excellent developer experience.

npm add @upyo/resend
import { createMessage } from "@upyo/core";
import { ResendTransport } from "@upyo/resend";

const transport = new ResendTransport({
  apiKey: process.env.RESEND_API_KEY!,
});

const message = createMessage({
  from: "hello@yourdomain.com", // Must be verified in Resend
  to: "user@example.com",
  subject: "Welcome aboard!",
  content: {
    text: "Thanks for joining us!",
    html: "<h1>Welcome!</h1><p>Thanks for joining us!</p>",
  },
  tags: ["onboarding", "welcome"], // For analytics
});

const receipt = await transport.send(message);

if (receipt.successful) {
  console.log("Sent via Resend:", receipt.messageId);
}

Notice how similar this looks to the SMTP example? The only differences are the import and the transport configuration. Your message creation and sending logic stays exactly the same—that's Upyo's transport abstraction at work.

Option B: SendGrid (enterprise-grade)

SendGrid is a popular choice for high-volume senders, offering advanced analytics, template management, and a generous free tier.

SendGrid is a popular choice for high-volume senders.

npm add @upyo/sendgrid
import { createMessage } from "@upyo/core";
import { SendGridTransport } from "@upyo/sendgrid";

const transport = new SendGridTransport({
  apiKey: process.env.SENDGRID_API_KEY!,
  clickTracking: true,
  openTracking: true,
});

const message = createMessage({
  from: "notifications@yourdomain.com",
  to: "user@example.com",
  subject: "Your weekly digest",
  content: {
    html: "<h1>This Week's Highlights</h1><p>Here's what you missed...</p>",
    text: "This Week's Highlights\n\nHere's what you missed...",
  },
  tags: ["digest", "weekly"],
});

await transport.send(message);

Option C: Mailgun (reliable workhorse)

Mailgun offers robust infrastructure with strong EU support—important if you need GDPR-compliant data residency.

npm add @upyo/mailgun
import { createMessage } from "@upyo/core";
import { MailgunTransport } from "@upyo/mailgun";

const transport = new MailgunTransport({
  apiKey: process.env.MAILGUN_API_KEY!,
  domain: "mg.yourdomain.com",
  region: "eu", // or "us"
});

const message = createMessage({
  from: "team@yourdomain.com",
  to: "user@example.com",
  subject: "Important update",
  content: { text: "We have some news to share..." },
});

await transport.send(message);

Option D: Amazon SES (cost-effective at scale)

Amazon SES is incredibly affordable—about $0.10 per 1,000 emails. If you're already in the AWS ecosystem, it integrates seamlessly with IAM, CloudWatch, and other services.

npm add @upyo/ses
import { createMessage } from "@upyo/core";
import { SesTransport } from "@upyo/ses";

const transport = new SesTransport({
  authentication: {
    type: "credentials",
    accessKeyId: process.env.AWS_ACCESS_KEY_ID!,
    secretAccessKey: process.env.AWS_SECRET_ACCESS_KEY!,
  },
  region: "us-east-1",
  configurationSetName: "my-config-set", // Optional: for tracking
});

const message = createMessage({
  from: "alerts@yourdomain.com",
  to: "admin@example.com",
  subject: "System alert",
  content: { text: "CPU usage exceeded 90%" },
  priority: "high",
});

await transport.send(message);

Part 4: Sending emails from edge functions

Here's where many email solutions fall short. Edge functions (Cloudflare Workers, Vercel Edge, Deno Deploy) run in a restricted environment—they can't open raw TCP connections, which means SMTP is not an option.

You must use an HTTP-based transport like Resend, SendGrid, Mailgun, or Amazon SES. The good news? Your code barely changes.

Cloudflare Workers example

// src/index.ts
import { createMessage } from "@upyo/core";
import { ResendTransport } from "@upyo/resend";

export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const transport = new ResendTransport({
      apiKey: env.RESEND_API_KEY,
    });

    const message = createMessage({
      from: "noreply@yourdomain.com",
      to: "user@example.com",
      subject: "Request received",
      content: { text: "We got your request and are processing it." },
    });

    const receipt = await transport.send(message);

    if (receipt.successful) {
      return new Response(`Email sent: ${receipt.messageId}`);
    } else {
      return new Response(`Failed: ${receipt.errorMessages.join(", ")}`, {
        status: 500,
      });
    }
  },
};

interface Env {
  RESEND_API_KEY: string;
}

Vercel Edge Functions example

// app/api/send-email/route.ts
import { createMessage } from "@upyo/core";
import { SendGridTransport } from "@upyo/sendgrid";

export const runtime = "edge";

export async function POST(request: Request) {
  const { to, subject, body } = await request.json();

  const transport = new SendGridTransport({
    apiKey: process.env.SENDGRID_API_KEY!,
  });

  const message = createMessage({
    from: "app@yourdomain.com",
    to,
    subject,
    content: { text: body },
  });

  const receipt = await transport.send(message);

  if (receipt.successful) {
    return Response.json({ success: true, messageId: receipt.messageId });
  } else {
    return Response.json(
      { success: false, errors: receipt.errorMessages },
      { status: 500 }
    );
  }
}

Deno Deploy example

// main.ts
import { createMessage } from "jsr:@upyo/core";
import { MailgunTransport } from "jsr:@upyo/mailgun";

Deno.serve(async (request: Request) => {
  if (request.method !== "POST") {
    return new Response("Method not allowed", { status: 405 });
  }

  const { to, subject, body } = await request.json();

  const transport = new MailgunTransport({
    apiKey: Deno.env.get("MAILGUN_API_KEY")!,
    domain: Deno.env.get("MAILGUN_DOMAIN")!,
    region: "us",
  });

  const message = createMessage({
    from: "noreply@yourdomain.com",
    to,
    subject,
    content: { text: body },
  });

  const receipt = await transport.send(message);

  if (receipt.successful) {
    return Response.json({ success: true, messageId: receipt.messageId });
  } else {
    return Response.json(
      { success: false, errors: receipt.errorMessages },
      { status: 500 }
    );
  }
});

Part 5: Improving deliverability with DKIM

Ever wonder why some emails land in spam while others don't? Email authentication plays a huge role. DKIM (DomainKeys Identified Mail) is one of the key mechanisms—it lets you digitally sign your emails so recipients can verify they actually came from your domain and weren't tampered with in transit.

Without DKIM:

  • Your emails are more likely to be flagged as spam
  • Recipients have no way to verify you're really who you claim to be
  • Sophisticated phishing attacks can impersonate your domain

Setting up DKIM with Upyo

First, generate a DKIM key pair. You can use OpenSSL:

# Generate a 2048-bit RSA private key
openssl genrsa -out dkim-private.pem 2048

# Extract the public key
openssl rsa -in dkim-private.pem -pubout -out dkim-public.pem

Then configure your SMTP transport:

import { createMessage } from "@upyo/core";
import { SmtpTransport } from "@upyo/smtp";
import { readFileSync } from "node:fs";

const transport = new SmtpTransport({
  host: "smtp.example.com",
  port: 587,
  secure: false,
  auth: {
    user: "user@yourdomain.com",
    pass: "password",
  },
  dkim: {
    signatures: [
      {
        signingDomain: "yourdomain.com",
        selector: "mail", // Creates DNS record at mail._domainkey.yourdomain.com
        privateKey: readFileSync("./dkim-private.pem", "utf8"),
        algorithm: "rsa-sha256", // or "ed25519-sha256" for shorter keys
      },
    ],
  },
});

The key configuration options:

  • signingDomain: Must match your email's "From" domain
  • selector: An arbitrary name that becomes part of your DNS record (e.g., mail creates a record at mail._domainkey.yourdomain.com)
  • algorithm: RSA-SHA256 is widely supported; Ed25519-SHA256 offers shorter keys (see below)

Adding the DNS record

Add a TXT record to your domain's DNS:

  • Name: mail._domainkey (or mail._domainkey.yourdomain.com depending on your DNS provider)
  • Value: v=DKIM1; k=rsa; p=YOUR_PUBLIC_KEY_HERE

Extract the public key value (remove headers, footers, and newlines from the .pem file):

cat dkim-public.pem | grep -v "^-" | tr -d '\n'

Using Ed25519 for shorter keys

RSA-2048 keys are long—about 400 characters for the public key. This can be problematic because DNS TXT records have size limits, and some DNS providers struggle with long records.

Ed25519 provides equivalent security with much shorter keys (around 44 characters). If your email infrastructure supports it, Ed25519 is the modern choice.

# Generate Ed25519 key pair
openssl genpkey -algorithm ed25519 -out dkim-ed25519-private.pem
openssl pkey -in dkim-ed25519-private.pem -pubout -out dkim-ed25519-public.pem
const transport = new SmtpTransport({
  // ... other config
  dkim: {
    signatures: [
      {
        signingDomain: "yourdomain.com",
        selector: "mail2025",
        privateKey: readFileSync("./dkim-ed25519-private.pem", "utf8"),
        algorithm: "ed25519-sha256",
      },
    ],
  },
});

Part 6: Bulk email sending

When you need to send emails to many recipients—newsletters, notifications, marketing campaigns—you have two approaches:

The wrong way: looping with send()

// ❌ Don't do this for bulk sending
for (const subscriber of subscribers) {
  await transport.send(createMessage({
    from: "newsletter@example.com",
    to: subscriber.email,
    subject: "Weekly update",
    content: { text: "..." },
  }));
}

This works, but it's inefficient:

  • Each send() call waits for the previous one to complete
  • No automatic batching or optimization
  • Harder to track overall progress

The right way: using sendMany()

The sendMany() method is designed for bulk operations:

import { createMessage } from "@upyo/core";
import { ResendTransport } from "@upyo/resend";

const transport = new ResendTransport({
  apiKey: process.env.RESEND_API_KEY!,
});

const subscribers = [
  { email: "alice@example.com", name: "Alice" },
  { email: "bob@example.com", name: "Bob" },
  { email: "charlie@example.com", name: "Charlie" },
  // ... potentially thousands more
];

// Create personalized messages
const messages = subscribers.map((subscriber) =>
  createMessage({
    from: "newsletter@yourdomain.com",
    to: subscriber.email,
    subject: "Your weekly digest",
    content: {
      html: `<h1>Hi ${subscriber.name}!</h1><p>Here's what's new this week...</p>`,
      text: `Hi ${subscriber.name}!\n\nHere's what's new this week...`,
    },
    tags: ["newsletter", "weekly"],
  })
);

// Send all messages efficiently
let successCount = 0;
let failureCount = 0;

for await (const receipt of transport.sendMany(messages)) {
  if (receipt.successful) {
    successCount++;
  } else {
    failureCount++;
    console.error("Failed:", receipt.errorMessages.join(", "));
  }
}

console.log(`Sent: ${successCount}, Failed: ${failureCount}`);

Why sendMany() is better:

  • Automatic batching: Some transports (like Resend) combine multiple messages into a single API call
  • Connection reuse: SMTP transport reuses connections from the pool
  • Streaming results: You get receipts as they complete, not all at once
  • Resilient: One failure doesn't stop the rest

Progress tracking for large batches

const totalMessages = messages.length;
let processed = 0;

for await (const receipt of transport.sendMany(messages)) {
  processed++;

  if (processed % 100 === 0) {
    console.log(`Progress: ${processed}/${totalMessages} (${Math.round((processed / totalMessages) * 100)}%)`);
  }

  if (!receipt.successful) {
    console.error(`Message ${processed} failed:`, receipt.errorMessages);
  }
}

console.log("Batch complete!");

When to use send() vs sendMany()

Scenario Use
Single transactional email (welcome, password reset) send()
A few emails (under 10) send() in a loop is fine
Newsletters, bulk notifications sendMany()
Batch processing from a queue sendMany()

Part 7: Testing without sending real emails

Upyo includes a MockTransport for testing:

  • No external dependencies: Tests run offline, in CI, anywhere
  • Deterministic: No flaky tests due to network issues
  • Fast: No HTTP requests or SMTP handshakes
  • Inspectable: You can verify exactly what would have been sent

Basic testing setup

import { createMessage } from "@upyo/core";
import { MockTransport } from "@upyo/mock";
import assert from "node:assert";
import { describe, it, beforeEach } from "node:test";

describe("Email functionality", () => {
  let transport: MockTransport;

  beforeEach(() => {
    transport = new MockTransport();
  });

  it("should send welcome email after registration", async () => {
    // Your application code would call this
    const message = createMessage({
      from: "welcome@yourapp.com",
      to: "newuser@example.com",
      subject: "Welcome to our app!",
      content: { text: "Thanks for signing up!" },
    });

    const receipt = await transport.send(message);

    // Assertions
    assert.strictEqual(receipt.successful, true);
    assert.strictEqual(transport.getSentMessagesCount(), 1);

    const sentMessage = transport.getLastSentMessage();
    assert.strictEqual(sentMessage?.subject, "Welcome to our app!");
    assert.strictEqual(sentMessage?.recipients[0].address, "newuser@example.com");
  });

  it("should handle email failures gracefully", async () => {
    // Simulate a failure
    transport.setNextResponse({
      successful: false,
      errorMessages: ["Invalid recipient address"],
    });

    const message = createMessage({
      from: "test@yourapp.com",
      to: "invalid-email",
      subject: "Test",
      content: { text: "Test" },
    });

    const receipt = await transport.send(message);

    assert.strictEqual(receipt.successful, false);
    assert.ok(receipt.errorMessages.includes("Invalid recipient address"));
  });
});

The key testing methods:

  • getSentMessagesCount(): How many emails were “sent”
  • getLastSentMessage(): The most recent message
  • getSentMessages(): All messages as an array
  • setNextResponse(): Force the next send to succeed or fail with specific errors

Simulating real-world conditions

import { MockTransport } from "@upyo/mock";

// Simulate network delays
const slowTransport = new MockTransport({
  delay: 500, // 500ms delay per email
});

// Simulate random failures (10% failure rate)
const unreliableTransport = new MockTransport({
  failureRate: 0.1,
});

// Simulate variable latency
const realisticTransport = new MockTransport({
  randomDelayRange: { min: 100, max: 500 },
});

Testing async email workflows

import { MockTransport } from "@upyo/mock";

const transport = new MockTransport();

// Start your async operation that sends emails
startUserRegistration("newuser@example.com");

// Wait for the expected emails to be sent
await transport.waitForMessageCount(2, 5000); // Wait for 2 emails, 5s timeout

// Or wait for a specific email
const welcomeEmail = await transport.waitForMessage(
  (msg) => msg.subject.includes("Welcome"),
  3000
);

console.log("Welcome email was sent:", welcomeEmail.subject);

Part 8: Provider failover with PoolTransport

What happens if your email provider goes down? For mission-critical applications, you need redundancy. PoolTransport combines multiple providers with automatic failover—if one fails, it tries the next.

import { PoolTransport } from "@upyo/pool";
import { ResendTransport } from "@upyo/resend";
import { SendGridTransport } from "@upyo/sendgrid";
import { MailgunTransport } from "@upyo/mailgun";
import { createMessage } from "@upyo/core";

// Create multiple transports
const resend = new ResendTransport({ apiKey: process.env.RESEND_API_KEY! });
const sendgrid = new SendGridTransport({ apiKey: process.env.SENDGRID_API_KEY! });
const mailgun = new MailgunTransport({
  apiKey: process.env.MAILGUN_API_KEY!,
  domain: "mg.yourdomain.com",
});

// Combine them with priority-based failover
const transport = new PoolTransport({
  strategy: "priority",
  transports: [
    { transport: resend, priority: 100 },    // Try first
    { transport: sendgrid, priority: 50 },   // Fallback
    { transport: mailgun, priority: 10 },    // Last resort
  ],
  maxRetries: 3,
});

const message = createMessage({
  from: "critical@yourdomain.com",
  to: "admin@example.com",
  subject: "Critical alert",
  content: { text: "This email will try multiple providers if needed." },
});

const receipt = await transport.send(message);
// Automatically tries Resend first, then SendGrid, then Mailgun if others fail

The priority values determine the order—higher numbers are tried first. If Resend fails (network error, rate limit, etc.), the pool automatically retries with SendGrid, then Mailgun.

For more advanced routing strategies (weighted distribution, content-based routing), see the pool transport documentation.


Part 9: Observability with OpenTelemetry

In production, you'll want to track email metrics: send rates, failure rates, latency. Upyo integrates with OpenTelemetry:

import { createOpenTelemetryTransport } from "@upyo/opentelemetry";
import { SmtpTransport } from "@upyo/smtp";

const baseTransport = new SmtpTransport({
  host: "smtp.example.com",
  port: 587,
  auth: { user: "user", pass: "password" },
});

const transport = createOpenTelemetryTransport(baseTransport, {
  serviceName: "email-service",
  tracing: { enabled: true },
  metrics: { enabled: true },
});

// Now all email operations generate traces and metrics automatically
await transport.send(message);

This gives you:

  • Delivery success/failure rates
  • Send operation latency histograms
  • Error classification by type
  • Distributed tracing for debugging

See the OpenTelemetry documentation for details.


Quick reference: choosing the right transport

Scenario Recommended Transport
Development/testing Gmail SMTP or MockTransport
Small production app Resend or SendGrid
High volume (100k+/month) Amazon SES
Edge functions Resend, SendGrid, or Mailgun
Self-hosted infrastructure SMTP with DKIM
Mission-critical PoolTransport with failover
EU data residency Mailgun (EU region) or self-hosted

Wrapping up

This guide covered the most popular transports, but Upyo also supports:

  • JMAP: Modern email protocol (RFC 8620/8621) for JMAP-compatible servers like Fastmail and Stalwart
  • Plunk: Developer-friendly email service with self-hosting option

And you can always create a custom transport for any email service not yet supported.

Resources

Have questions or feedback? Feel free to open an issue.


What's been your biggest pain point when sending emails from JavaScript? Let me know in the comments—I'm curious what challenges others have run into.


Upyo (pronounced /oo-pyo/) comes from the Korean word 郵票, meaning “postage stamp.”

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to 洪 民憙 (Hong Minhee) :nonbinary:'s post

結局リリースできないまま2026年を迎えてしまいました…!今月こそは、絶対に新バージョンをリリースするぞ…!

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to jnkrtech's post

@jnkrtech True commitment to the Mac workflow: including the “Apple tax” equivalent. 😂

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to 洪 民憙 (Hong Minhee) :nonbinary:'s post

明けましておめでとうございます!2026年もよろしくお願いいたします。

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social

2026()에도 새해 () 많이 받으세요!

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social

If you want to use Linux but also want the “it just works” experience of a Mac, I recommend Fedora Linux. Out of all the Linux distros I've tried, it's the most low-maintenance one.

Of course, if what I just said rubs you the wrong way, then you should be using Arch Linux. No, wait, you probably already are.

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to 洪 民憙 (Hong Minhee) :nonbinary:'s post

I posted a blog entry to wrap up the year: My 2025 with the fediverse. I'm grateful that the fediverse has allowed me to connect with so many people. I look forward to our continued connection.

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to 洪 民憙 (Hong Minhee) :nonbinary:'s post

Fediverse Advent Calendar 2025の10日目に参加する記事をブログに投稿しました:「フェディバースと過ごした2025年」。タイトルの通り、フェディバースと共に過ごした私の一年を振り返る内容です。フェディバースのおかげで多くのご縁に恵まれ、感謝しています。これからもよろしくお願いします。

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social

한 해를 마무리하는 글을 블로그에 썼습니다: 〈聯合宇宙(연합우주)와 함께 한 2025()〉(한글 專用文(전용문)이쪽). 題目(제목) 그대로 聯合宇宙(연합우주)와 함께 했던 저의 한 해를 되돌아 보는 글입니다. 聯合宇宙(연합우주) 德分(덕분)에 많은 因緣(인연)과 이어지게 되어서 感謝(감사)하게 생각합니다.

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to bgl gwyng's post

@bgl 흠, 생각해 보니 그렇네요. 근데 그렇게 가다 보면 LangGraph나 Mastra 같은 것에 가까워 지는 것 같기도 하고요…? 🤔

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to bgl gwyng's post

@bgl 오… 아직 생각해 본 적 없는데, 그런 툴과 함께 쓰는 것도 다음 버전에서 생각해 보도록 하겠습니다!

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social

ご飯を食べるたびにNetflixで『ラヴ上等』を観てるんだけど、普通に面白い。

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social · Reply to 최치선's post

@quadr 쉬엄쉬엄 일하세요!

Masanori Ogino 𓀁's avatar
Masanori Ogino 𓀁

@omasanori@mstdn.maud.io

NodeでもDenoでもBunでも動くサーバーアプリを書くのに役立つっぽい?

github.com/h3js/srvx

洪 民憙 (Hong Minhee) :nonbinary:'s avatar
洪 民憙 (Hong Minhee) :nonbinary:

@hongminhee@hollo.social

Released Vertana 0.1.0—agentic for /.

Instead of just passing text to an , it autonomously gathers context from linked pages and references to produce translations that actually understand what they're .

Armin Ronacher's avatar
Armin Ronacher

@mitsuhiko@hachyderm.io · Reply to aburka 🫣's post

@aburka You're judging before you've tried, and that's the disservice. You're assuming your skills will dull if you use an agent, and you're treating that assumption as a conclusion. That's the mistake. Try it first. See what actually happens. Then adjust your thinking based on experience, not fear.

I'm using them for months now, and in no way is it dulling my skills. I haven't learned as much as a programmer in years personally.

Armin Ronacher's avatar
Armin Ronacher

@mitsuhiko@hachyderm.io · Reply to Armin Ronacher's post

And I'm saying this also because I saw multiple people now who I knew learned throughout the year what AI agents are and it didn't click, until they took the time over Christmas to really dive in.

Armin Ronacher's avatar
Armin Ronacher

@mitsuhiko@hachyderm.io

If you are a programmer and an AI hold-out, and you have some time off during Christmas: gift yourself a 100 USD subscription to Claude Code and … try it. But really try it. Take a week if you can afford it and dive in. It will change your opinion on these tools.

KipJayChou :antiverified:'s avatar
KipJayChou :antiverified:

@admin@mstdn.feddit.social

botkit.fedify.dev

notebooklm.google.com/notebook

BotKit:轻松构建独立机器人
ALT text detailsBotKit:轻松构建独立机器人
The BotKit Blueprint: Scaling Fediverse Automation
ALT text detailsThe BotKit Blueprint: Scaling Fediverse Automation
Jazz de Ville – Jazz's avatar
Jazz de Ville – Jazz

@jdv_jazz@mastodon.nl

Willis Jackson - Thunderbird

Cover: Willis Jackson - Thunderbird
ALT text detailsCover: Willis Jackson - Thunderbird
Jazz de Ville – Jazz's avatar
Jazz de Ville – Jazz

@jdv_jazz@mastodon.nl

Michael Franks - Summer In New York

Cover: Michael Franks - Summer In New York
ALT text detailsCover: Michael Franks - Summer In New York
디토's avatar
디토

@ditto@sapzil.org

기술적으로 지금 2026년 첫번째 주구나

Misty's avatar
Misty

@misty@digipres.club

I love that this game is always emphasizing how this character speaks heavily English-accented Japanese. I guess because she's a golden retriever, and those are from Scotland. Someone greeted her with ごきげん in hiragana, and she replies with ゴキゲン in katakana. Very cute way of depicting an accent textually. She's also constantly littering her Japanese with bits of English, written in hiragana or katakana.

Screenshot of a video game on a Nintendo DS. Two dog characters are speaking. One says: う〜ん、それが、あまりゴキゲンじゃないで〜す・・・。
ALT text detailsScreenshot of a video game on a Nintendo DS. Two dog characters are speaking. One says: う〜ん、それが、あまりゴキゲンじゃないで〜す・・・。
Screenshot of a video game on a Nintendo DS. Two dog characters are speaking. One says: う〜ん、それが、あまりゴキゲンじゃないで〜す・・・。
ALT text detailsScreenshot of a video game on a Nintendo DS. Two dog characters are speaking. One says: う〜ん、それが、あまりゴキゲンじゃないで〜す・・・。
Older →